To achieve the demands of extreme scale and the delivery of ExaScale, we embrace the computing platform as a whole, not just component optimization or fault resilience. EuroEXA brings a holistic foundation from multiple European HPC projects and partners together with the industrial SME focus of Maxeler for FPGA data-flow; Iceotope for infrastructure; ARM for HPC tooling and Zeropoint to collapse the memory bottleneck; to co-design a ground-breaking platform capable of scaling peak performance. Further, we target an ERE (PUE accounting for heat reuse) rating of less than 1.0 through use of renewables, heat reuse and immersion-based cooling.
We co-design a balanced architecture for both compute and data-intensive applications using a cost-efficient, modular integration approach enabled by novel inter-die links and the tape-out of a resulting EuroEXA processing unit with integration of FPGA for data-flow acceleration. We provide a homogenised software platform offering heterogeneous acceleration with scalable shared memory access and create a unique hybrid geographically-addressed, switching and topology interconnect within the rack while enabling the adoption of low-cost Ethernet switched offering low-latency and high-switching bandwidth.
Working together with a rich mix of key HPC applications from across climate/weather, physics/energy and life-science/bioinformatics domains we will demonstrate the results of the project through the deployment of an integrated and operational peta-flop level prototype hosted at STFC. Supported by run-to-completion platform-wide resilience mechanisms, components will manage local failures, while communicating with higher levels of the stack. Monitored and controlled by advanced runtime capabilities, EuroEXA will demonstrate its co-design solution supporting both existing pre-exascale and project-developed ExaScale applications.